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Abstract 27
Nowadays, coronavirus disease 2019 (COVID-19) msres the most serious 28
inflammatory respiratory disease worldwide. Despismny proposed therapies,290
effective medication has yet been approved. Nehilopppear to be the key 30
mediator for COVID-19-associated inflammatory imrapathologic, 31
thromboembolic and fibrotic complications. Thus, &ny therapeutic agent to 32
effective, it should greatly block the neutrophtiemponent of COVID-19. One3af
the effective therapeutic approaches investigatedduce neutrophil-associatezt
inflammatory lung diseases with few adverse effe@s roflumilast. Beinga 35
highly selective phosphodiesterase-4 inhibitorsERiR roflumilast acts by 36
enhancing the level of cyclic adenosine monophdspft®AMP), that probably 37
potentiates its anti-inflammatory action via in@ieg neprilysin (NEP) activity. 38
Because activating NEP was previously reporteditigate several airway 39
inflammatory ailments; this review thoroughly dissas the proposed NEP-baded
therapeutic properties of roflumilast, which maydigreat importance in curingl
COVID-19. However, further clinical studies are wggd to confirm this strategi?
and to evaluate its in vivo preventive and theréipeificacy against COVID-1913
44
Keywords 45

COVID-19; Roflumilast; cAMP; Neprilysin; IL-6-indwed endothelial dysfunctio;

Neutrophil-mediated inflammatiomGF$1-induced pulmonary fibrosis 47
48
1. Introduction 49

COVID-19 is a global infectious disease that resuita huge number of deaths0
For restricting its spread, there is an urgent neexvok the most effective therapy.
(Heng Li et al., 2020). Recently, a study hypothesithat using anti-inflammatégy
PDEA4i for modulating COVID-19 may be beneficial iyewood et al., 2020). 53
AmongPDEA4i, roflumilast exhibits the highest efficacy fargeting and bluntingg

2



airway inflammation via enhancing the level of cANFabe, 2011), which in tsh
may prolong its anti-inflammatory effect by activat NEP (Graf et al., 1995). A6
NEP is lately supposed to be a new potential tdayeZOVID-19 therapy (EI 57
Tabaa and El Tabaa, 2020), roflumilast-inducedease in NEP activity may hage
a prominent significance. Thus, we aim to reviea pnoposed NEP-dependents9
pharmacological mechanisms by which roflumilast btk the inflammatory, 60
coagulopathy and fibrotic cascades associated@mkID-19. 61
2. COVID-19 challenges 62
COVID-19 is a contagious fatal respiratory diseezeased by a novel virus calléd
severe acute respiratory syndrome coronavirus-R&L&oV-2). It was first 64
recognized at the end of 2019 in Wuhan, China beiihg now an ongoing 65
pandemic (Huang et al., 2020). As of 30 June 26®%%¢ than 10.3 million casés
have been reported across 188 countries and texsifoesulting in more than 67

507,000 deaths and more than 5.28 million people hecovered (CSSE, 2028

2.1 Clinical manifestations of COVID-19 69
Being one of severe airway diseases, COVID-19 ptstiesually show typical 70
symptomatic respiratory presentations, such astcdirgdness, muscle aches,71
headache, sore throaith sometimes fever and chills (Singhal, 2020)suich 72
cohort, some patients may suffer from other wordesyenptoms, such as proforsd
acute shortness of breatbmbined with persistent chest pain, increasing the 74
emergency need for oxygen therapy and mechanicélation (Yang et al., 20213.
On the contrary, there are asymptomatic carri¢estavho experience no 76
symptoms or even only very mild symptgrimereasing thereby the risk of disesse
transmission (Lai et al., 2020). 78
Case reports declare that some people may disfii@y onusual non-respiratory9
manifestations such as diarrhea which is recogrizée an initiakign of COVIZ0

19 infection, in addition to taste or olfactoryatiders which are especially 81



identified in young people infected with SARS-Co\(L21érs et al., 2020; Songset
al., 2020). 83
Early clinical studies report that critically ill@v/ID-19 patients may associate84
with cardiovascular insults including myocardigliy, myocarditis, cardiac 85
arrhythmias and heart failure with increased ragkthiromboembolism as 86
pulmonary embolus because of COVID-19-induced hggeegulable state (Driggih
et al., 2020). 88
Other cases with COVID-19 may also exhibit somerolegical symptoms 89
including dizziness, ataxia, altered mental stateven seizures (Mao et al., 2020).
As well, some common COVID-19-related complicatibase been detected 91
involving elevated liver enzymes, acute kidney iinj(AKI) as well as an 92
increased risk of developing fatal bacterial inf@cs (Cox et al., 2020; Yang et#.,
2020). Lately, ocular abnormalities such as corjuathyperemia, chemosis, @d
increased secretions are additionally reporteddVID-19 infected patients (\Wa5

et al., 2020). 96

2.2 High-risk groups of COVID-19 97

As documented, COVID-19 can infect different grooppeople, where most 098

them will recover without hospitalization, but othevill develop sever 99

complications. People at higher risk from COVID+@6lude older people, usualljo
over 60 to 70 years old and those who have weakemadne response either dog
to administering chemotherapy, radiation or medbcator an autoimmune 102
disease, undergoing an organ or stem cell transpemg a spleen or having a03
non-functioning one. Moreover, adults (over 18 gedd) with underlying chrorio4
medical conditions such as high blood pressuréetiés, chronic heart, lung arid5
kidney diseases amore vulnerable to succumb to COVID-19 infection 106
(Vishnevetsky and Levy, 2020). Similarly, pregnexatmen appear to be more 107

susceptible to COVID-19 with the potential of deyghg maternal and fetal 108



complications (H. Liu et al., 2020). As well, thesealso an increased risk for 109
overweight people and heavy cigarettes smokers @faiend Tahapary, 2020; VD
Zyl-Smit et al., 2020). 111
On the other hand, all children, even those witteulying medical problems, diti2
not show a high risk of severe illness from COVID{Lyu et al., 2020). 113
3. Pathophysiology of COVID-19 114
Since the prevalence of COVID-19 has nowadays be@major global burderni15
around the world, there has been a necessity forpethe precious 116
pathophysiological researches that will aim at geizing the involved biologicall7
markers and the clear mechanisms through whicHifease pathogenicity 118
induced by SARS-CoV-2 can be explained. 119
Obviously, the coronavirus genome cannot be reglitautside the cytoplasmic20
membranes, so it continuously seeks to penetratgcells for ensuring its 121
survival. For viral replication, polyproteins shdudde firstly hydrolyzed into 122
functional proteins by a variety of proteolytic gnes, which are more commotilg
known to RNA viruses such as RNA-dependent RNA pelsase (RdRp), 3 124
chymotrypsin like protease (3CL protease), papképrotease and helicase 125
(Ziebuhr, 2005). 126
At present, several studies showed that penetrptiegmocytes is considered a7
the main pathway for SARS-CoV-2 replication wittie human body. That 128
finding is ensured from the evidence of utilizinggetensin-converting enzymei 29
(ACE-2) enzyme as receptors for viral entiig. 1) (H. Zhang et al., 2020). AGB®6
2 was found to be highly expressed in alveolarl@odchial membranes, in typesil
pneumocytes and possibly on vascular endotheliisl @&C) within lungs (Jia, 132
2016); explaining why the common signs and symptohrespiratory infection 133

will develop in coinciding with COVID-19 disease. 134



Simultaneously, ACE-2 proteimas also detected to be distributed in various 135
human organs other than lungs involving oral arghhaucosa, gastrointestinal36
tract (GIT), skin, heatrt, liver, kidney, and bréitamming et al., 2004); elucidatiBg
the reason for developing other extra-pulmonaryifaatations associated with138
COVID-19 infection. 139
Binding of SARS-CoV-2 with ACE-2 may downregulat€B-2 and subsequeriti
inhibit the ACE-2-regulated generation of angioter{$—7) peptide which can, ¥4
Mas receptor, perform several beneficial activiiessasodilator, anti- 142
inflammatory, anti-hypertrophy, anti-proliferativenti-fibrosis and antioxidant 143
(Kuba et al., 2005). 144
Concerning the pulmonary RAS, cutting off the ACEahgiotensin (1-7) / Mag45
receptor axis will activate the vasopressor AGEdiotensin (Ang) Il Angiotensit6
Il type 1 receptor (AT1) axis on the other sideeHxis which may drive the 147
airway inflammatory cascades, because of significamease in Ang |l level. Ang8
I, through activating angiotensin Il type 1 reca@ptould promote the release 049
multiple inflammatory cytokines especially TNE4L-6, GM-CSF and MCP-1 150

(Sprague and Khalil, 2009). 151

3.1 Cytokine storm in COVID-19 152
Cytokine storm is a fierce interplay of cytokingattcan occur in numerous 153
infectious and non-infectious diseases (Teijard,720lt is considered as a 154
potentially fatal immune reaction that consista gfositive feedback loop betweabh
cytokines and immune cells. When the immune sys$eighting pathogens, 156
cytokines signal immune cells, such as T cellsraadrophages can travel to th&7
site of infection, where they will be activated astuinulated to produce more 158
cytokines. This positive feedback loop reactiondmees uncontrolled and then 158

many immune cells are activated in a single pl@omsequently, cytokine storme0



will have the potential to significantly damage pdidsues and organs (Tisoncil6gt
al., 2012). 162
In the lungs, for example, increasing the reledsytokines such as interleukint63
(IL-6) will trigger the fluids and immune cells bee accumulated, eventually blaék
off the airways, and potentially lead to death @mand Irvin, 2012) . This is 165
obviously detected in seriously ill COVID-19 patiemvho showed high levels ab6
IL-6 (Dal Moro and Livi, 2020). 167
Because of the positive correlation between high level and COVID-19 168
severity, IL-6 is specifically suggested to be tester marker used for monitoti6g
disease progression (T. Liu et al., 2020)ere is a growing evidence that IL-6 £zl
play a crucial part in the uncontrolled intestimdllammatory process, proving itg'1
role in the pathogenesis of COVID-19-asociatedrdea. However, another 172
causing factor may be attributed to the directhireasion of gut epithelial cells173
via ACE-2 (Mudter and Neurath, 2007). 174
As previously reported, IL-6 could prohibit theauttory signal pathwayroposirigs
that anosmia detected in COVID-19 patients mayusetd IL-6-mediated 176
inflammation of the nasal mucosa (Henkin et al1320.uérs et al., 2020). Besities,
other additional elements supporting that SARS-Qaviay have a neuro-invasiveé
propensity to invade the central olfactory pathwaysing olfactory dysfunctiori79
(Marinosci et al., 2020). Jointly, IL-6 was alsaufm to be extremely involved 180
in promoting the ocular inflammation; matching witbnjunctivitis that is recentlgl

reported to be linked with COVID-19 infection (Gkeas, 2018). 182

3.2 IL-6-induced endothdlial dysfunction and coagulopathy in COVID-19 183
In addition to the direct role of SARS-CoV-2/ACHHeraction in inducing the 184
endothelial dysfunction (Y. Zhang et al., 2020)6wvas also reported to interru®s
the normal function of endothelial cells (ECs) thgh inactivating the endothelitg6

nitric oxide synthase (eNOS) which in turn couldr@@ase NO production with 187



subsequent induction of an oxidative stress seagihg to impairment in 188
endothelial responses (Hung et al., 2010). 189
As a consequence, disrupting the endothelial aalition either by SARS-CoV-290
itself or  IL-6 could activate the plateletslatimulate their adhesion and 191
aggregation; resulting in a pulmonary specific wggathy termed pulmonary 192
intravascular coagulopathy (PIQAird, 2003; Levi and van der Poll, 2017; 193
McGonagle et al., 2020). 194
Most anatomical studies of COVID-19 victims demoais the formation of blo@és
thrombus (fibrin clot) in their pulmonary vesseitsaddition to deep vein 196
thrombosis that increases the risk for developmgipnary embolism (Cui et atl97
2020; Klok et al., 2020). These clots result iroenpensatory increase of 198
plasminogen (fibrinolysin) but, with disease pragien, it fails to break down 199
these fibrin deposits reflected in elevated D-difiD) levels, which is reporte@@0
be associated with the severity of COVID-19 infestand may be also correlagsi
with activation of the pro-inflammatory cytokinestade (Belen-Apak and 202
Sariali@lu, 2020; Leonard-Lorant et al., 2020). 203
Emerging data suggest that COVID-19-associatedthatial dysfunction could 204
induce several structural and functional changssltiag in leukocyte traffickin@,05
which in turn, may shift the vascular equilibriuawards triggering more 206
inflammation (Aird, 2003). Although leukocyte traffing was known to play a207
essential part in the protective responses againsinfection or injury, it may akus
lead to extensive tissue damage as shown in nusméerbammatory disorders 209
(Chen et al., 2018). One of the most abundant leytks being assured in COVADA
19 are neutrophils that represent the first lindefense in the innate immune 211

system. 212

3.3 Neutrophil-mediated inflammation in COVID-19 213



With the continual reduction detected in lymphosyteunt of COVID-19 patier2s4
they become more prone for secondary infectionis thi¢ risk of high mortality 215
rate. This occurs due to loss of all lymphocyteetidr cells that possess the 216
essential antiviral activity, including CD8+ or oybxic lymphocytes and natural17
killer cells, as well as B cells, which able tarfothe specific antibodies targeted8
for inactivating the virus (Dallan et al., 2020;Reet al., 2020). 219
Therefore, developing severe lymphopenia will @ffety inhibit the stimulation220
of adaptive cell-mediated immune response and coesely, facilitate the 221
inflammation-mediated neutrophil response whichdde started with their 222
chemotaxis and recruitment, followed by degranata{Didangelos, 2020; Hyun23
and Hong, 2017). Neutrophils possess an arsemabtdases such as (elastase?24
proteinase-3 and cathepsin G), inflammatory mediatach as (TNFr and IL-6),225
and toxic oxidants that do not kill phagocytosethpgens only, but also can 226

damage the host tissue (Gernez et al., 2010). 227

3.4 Inflammatory sepsisin COVID-19 228
In response to high neutrophilia with progressiraghopenia established in 229
COVID-19, viral sepsis may be promoted as a resfudyystemic uncontrolled 230
inflammation induced by neutrophils with furthernsening of tissue injury (Hu231
Li et al., 2020), that is consistent with the fidédgnosis emphasizing the existe3ze
of a septic shock among COVID-19 patientth profound lymphopenia (Dalla233
al., 2020). 234
Sepsis is a syndrome that has attracted the aentridwide because of its higB5
mortality rate of about 50—-80%. It is widely recagpud as a systemic inflammansey
response syndrome, that had been defined as a@outigbrder arising from th@37
dysregulation of an inflammatory response of thirewrganism to an infectioredg

to circulating bacterial products, rather than dtifen (Bone et al., 1992). Howe2g9,



sepsis has been now redefined as a life-threatemgan dysfunction due to a 240
dysregulated response of the host to infectiong@&iet al., 2016). 241
Sepsis itself may share in the subsequent reldastiaanmatory factors (IL-6 and2
TNF-o) that could eventually aggravate the existingaimimation (Molano Fran2a3
et al., 2019) and thus, could lead to multiple ardgsfunction, shock, and even44
death, which are not caused directly by the invggiathogens; but as a result 245
inflammation (Crowther, 2001; Mantzarlis et al. 1Z}. 246
During sepsis, there is an extensive crosslink eetwincreased inflammation, 247
endothelial dysfunction and hyper-coagulopathyylmch the microvascular 248
dysfunction was documented to be one of importepsis hallmarks (Schouter2é®

al., 2008). 250

3.5 TGF-g1-induced pulmonary fibrosisin COVID-19 251
Given the reported evidence of induced endothdliafunction, pulmonary 252
fibrosis may be also prompted as a substantiall@nolburing COVID-19 253
infection,to the extent that pulmonary post-mortem findingfatal cases of 254
COVID-19 revealed the presence of extensive fibriaatures as myofibroblastiés
proliferation or organizing pneumonia (George et2020). The vascular 256
endothelial dysfunction could stimulate the fibcatbnsequences via secretinga7
peptide, namely endothelin-1 (ET-1) (Elshazly et2013), which could induce258
the release of transforming growth factet-(TGFf1), a fibrogenic cytokine 259
mainly implicated in driving the pulmonary fibrogisvelopment (Wermuth et al60

2016). 261

3.6 ET-1-reduced cCAMP in COVID-19 262
Surprisingly, ET-1 is also suggested to exaggaregenflammation via inhibitin@63
adenylyl cyclase (AC) activity and thereby, cCAMR@aulation (Insel et al.,, 264
2012).Within the immune system, cAMP is synthesizech ATP by the action 265

AC to regulate the anti-inflammatory effects (Genét al., 1988). As reported,266
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cAMP could decrease the production of pro-inflanonamediators as well as 267
enhance the production of anti-inflammatory factargarious immune cells 268
(Raker et al., 2016Meanwhile, cAMP was concluded to promote ATP praids9
that is described to potentially improve the efficiy of innate and adaptive 270
immune systems for fighting off COVID-19 (De Raspial., 2016; Taghizade@71
Hesary and Akbari, 2020). 272
Consistent with these findings, it was reported @@VID-19 may be more fate73
in the elderly-population than in children, as witbreasing the age, there is a274
gradual decline in the cellular ATP and subsegédiR-induced cAMP 275
accumulation (Srivastava, 2017). Furthermore, tobamokers, who suffer froava
decreased content of ATP in immune cells, arefalsod to be more susceptiblz?7
for COVID-19 infection (Malhska et al., 2019). 278
Regardless of age, males are generally more poodie oy COVID-19 than 279
females (Jin et al., 2020). The finding which caraltributed to sex hormone 280
differenca, since estrogen was recorded to potentially indAice production 281
during the inflammation than androgens (Kassi amdifgatsou, 2010). 282
Additionally, the same strategy could be partidylaglevant for patients with 283
serious medical conditions, who showed an immurseedpulation as a result 0f284
ATP-depletion (Zhou et al., 2020). 285
4. COVID-19 therapies 286
With extremely rapid increase in the number of SARS/-2- infected cases 287
globally, there is unfortunately sufficient time fdiscovering a newly therapeu88
agent. Taken together, directing most efforts talwataccine production may b28sf
no avail at least nowadays, since millions of pe@ierywhere have been alrezely
infectedwith COVID-19, and they are in urgent need for dagpeéatment in orde2gd
prevent the disease progressionaddition, developing anti-viral drugs needs 202

long way to goTherefore, the best choice may be repurposingufrermtly 293

11



available drugs which may greatly save time andeyas well as secure many94
people from death. 295
World Health Organization (WHO) reported that COVIB now becomes mucko6
more than a health crisis. Till present, cut@@VID-19 remains elusive, in spitx97
of the great efforts directed by the researchewsutds understanding and 298
identifying the disease mechanisms. There is nbtitat COVID-19 can triggex99
airway inflammatory reactions, in which neutrophilay the major role in 300
increasing the severity by inducing COVID-19-asateil coagulopathy (Zuo eBal,
2020). In that context, several therapeutic stiagelgave been proposed to corgeal
COVID-19 (Cascella et al., 2020). 303
4.1 Current therapies 304
The most common one involves the use of hydroxyolgeine (HCQ) as the fir885
line therapy because of its anti-inflammatory amdhunomodulatory effects (HBI06
et al., 2017). Based on the international guidslit#CQ is reported to be utilizéd7
either alone or in combination with other drugduking, systemic corticosterosizg
tocilizumab (TCZ), macrolide azithromygiantiviral lopinavir/ritonavir and 309
anticoagulant enoxaparin (Mehra et al., 2020; Roseanet al., 2020). However310
the use of HCQ is lately recorded to have manyiogisins due to increased rise of
serious cardiac arrhythmias (Nguyen et al., 20&@4litionally, both HCQ and 312
chloroquine (CQ) are no longer authorized by FDAr¢at COVID-19 313
(FDA.,2020). 314
Moreover, current COVID-19 treatment protocol alscommends the use of oBab
anti-inflammatory steroids such as dexamethasoimhated corticosteroid sucB B
ciclesonide. Ciclesonide was reported to exhibihlantiviral and anti- 317
inflammatory actions with less systemic immunosegpive effects (Matsuyanii et
al., 2020). However, further studies are needexbidirm its potential effect 319

against COVID-19 (lwabuchi et al., 2020). 320
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Controversially, using steroids may paradoxicakgggerate the COVID-19- 321
associated neutrophilia (Fukakusa et al., 200%dtition, steroids should be 322
taken with caution in vulnerable patients with psésting hypertension, diabeté23
or cardiovascular diseases, which, at the same tepeesent the highest risk 324
group of COVID-19 (Varga et al., 2020). That pushkdicians to search for 325
additional or alternative anti-inflammatory treatiteethat can efficiently controB26
the neutrophilic component of COVID-Epart from steroid related complicatidng.
TCZ, a humanized monoclonal antibody acting by kitog IL-6 receptor, has baea
suggested for COVID-19 patients to suppress tHarmhatory storm and 329
minimize the mortality (Fu et al., 202@jowever, some studies showed that T332
may effectively reduce both fever and inflammatmgrkers, but with no 331
satisfactory clinical outcomes inferréat the critically ill COVID-19 patients 332
(Campochiaro et al., 2020; Dastan et al., 2020)}d@zumented, this medicatior333
may also raise both blood pressure and lipid levetsch are considered the magd
risk factors exaggerating the severity in COVIDgHients of cardiovascular (3%%
diseases (Rao et al., 2015urthermore, anti-interleukin therapy is expected 336
worsen the post-COVID-19 pulmonary fibrosis (Gecegal., 2020; Silva et al. 337
2020). 338
As regards to azithromycin, pieces of clinical evide revealed that it could ex&3p
a great role against both SARS and Middle EastiRespy Syndrome (MERS)340
that prompted scientists to strongly suggest & petential treatment for COVIB41
19. Azithromycin was detected to possess antisimfite@tory and 342
immunomodulating actions in addition to antivirabperties because of its abildy3
to minimize the production of pro-inflammatory citioes particularly IL-6 and 344
TNF-a, noxious oxidative radicals as well as to imprdvielper cell functions. 345
However, the preliminary studies have demonstritadusing azithromycin 346
should be in caution due to its potential arrhytgerac threat, especially in high47
risk COVID-19 patients (Pani et al., 2020). 348
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Moreover, provision should be also taken to mitghe cardiac risk, especiall\349
after adding lopinavir/ritonavir into the curren¢@tment protocol for COVID-1350
(Gérard et al., 2020). Lopinavir acts as anti-HPgtpase inhibitor via inhibiting351
the action of 3CLpro, thus disrupting the virallregtion and release from host352
cells. Recent in vitro study indicates that lopin@an also exhibit antiviral acthaBa
against SARS-CoV-2, with which ritonavir can be edlds a booster. HoweveB54
there is a contradictory survey having concluded tihe use of lopinavir/ritona\db5
shows no significant reduction in the mortalityeratithin the severely ill COVIBB6
19 patients (Owa and Owa, 2020). 357
A prodrug of adenosine analogue, namely remdelsasgralso shown antiviral 358
activity against COVID-19 in human airway epithetialls and in a non-humarg59
primate model. Because of its efficacy in inhilitwviral RNA-dependent RNA 360
polymerase, remdesivir had previously prescribed lasad-spectrum antiviral361
agent for several RNA viruses such as respiratgmgygial virus, Nipah virus, 362
Ebola virus (EBOV), MERS-CoV, and SARS-CoV-1 (Sirgftal., 2020). 363
A novel originally developed broad-spectrum angivitrug, favipiravirhas beers64
also experimentally tested against COVID-19. Faaiir is a pyrazine 365
carboxamide derivative that can selectively blodluenza viral replication via 366
inhibiting the viral RNA-dependent RNA polymerasga( et al., 2020). 367
Additionally, nafamostat, an oral serine proteasbehitor, was reported to 368
significantly inhibit SARS-CoV-2 infection in lunderived human cell line Calg&®
(Hoffmann et al., 2020). Regarding the efficacy aatety of nafamostat, a 370
prospective clinical trial (NCT04352400) is beirmpducted to evaluate its 371
possible role against COVID-19 (Azimi, 2020). 372
Another repurposed drug suggested for treating @19 because of its potensiad
antiviral activity was famotidine. Using famotidire histamine-2 (H2RA) recepiot
antagonist among the hospitalized COVID-19 patiersts documented to redudes
the mortality rate. Famotidine may interfere withRss-CoV-2 maturation by 376

14



inhibiting the activity of 3CLpro. However, its ttagpeutic role against COVID-397
is still at nascent stage and randomized contrdtlats are urgently needed 378
(Aguila and Cua, 2020). 379
4.2 Potential COVID-19 therapies 380
Considering ACE-2 to be the only viral receptoragav study has proposed thag1
lactoferrin, an orally nutritional supplement, niag/ potentially useful against 382
COVID-19. In addition to its uniqgue immunomodulat@nd anti-inflammatory 383
effects, lactoferrin has been described to possibtyipy angiotensin-convertings4
enzyme ACE-2 receptors preventing SARS-CoV-2 frétaching to the host cell8s
(Kell et al., 2020), however it is not proved titbw. 386
Most of the repurposed drugs used for treating @YD are directed mainly 387
towards blocking the induced cytokine storm, howehkies COVID-19-related 388
sepsis argues now for investigating a differentapeutic approach (Remy et a389
2020). 390
Since the morbidity/mortality rate in septic patgewas reported to be correlatéd1
with the plasma level of ET-1, reduciitg level may minimize all unwanted 392
reactions mediated by endothelin ET-1 receptors.di¥servation that may expi@is
why anti-inflammatory drugs like anti-TNé&-and IL-1-based therapies have faibd
in treating sepsis, opposite to clinical trialsttimaicated the application of 395
endothelin ET-1 receptor blockers as an effectirategy (Kowalczyk et al., 396
2015). In addition, decreasing ET-1 level may intpt the fibrotic pathway 397
regulated by TG, thus inhibiting the induction of pulmonary filsis. 398
Because ET-1 was previously reported to be onbeo$tibstrates that could be399
potentially degraded by endogenous NEP (neutradeptidase) (Abassi et al.400
1992), that pushed us to predict that enhancing atiiRity may become a 401
prerequisite to defeat COVID-19 ghost (El TabaaBhdabaa, 2020). 402
NEP is aype Il integral transmembrane metallopeptidasechvivas clearly 403
detected in various tissues like lung, kidney, myraitestine, and vascular 404
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endothelium (Li et al., 1995) as well as in marfjaimmatory cells including 405
neutrophils (Connelly et al., 1985). In the airway&P has been found to be 406
expressed in the epithelium (Sont et al., 1997patmuscle cells (Di Maria e#07
al., 1998), and fibroblasts (Kletsas et al., 1998). 408
NEP was also found to degrade the endogenous vasopeptides including atfiéd
natriuretic peptide (ANP). Thus, inhibiting NEP gamwlong and potentiate thei#10
natriuretic actions. That action pushed clinicismsse NEP inhibitors (e.g. 411
Sacubitril) in a combination with ACE inhibitors.ge valsartan) for lowering 412
blood pressure and treating heart failure (Brat20%9). 413
Furthermore, a high cleaving affinity of NEP towsisbme potent inflammatory14
such as bradykinins (BKs) and N-formyl-L-methionyHeucyl-L-phenylalanine415
(fMLP) emphasized its potential role in alleviatitige airway inflammatory 416
processes (Connelly et al., 1985; Shimamoto e1894). 417
Several studies ensured that destroying or dowalaggg NEP may lead to 418
further pathophysiological changes. This involvesmerease in vascular 419
permeability, recruitment, and activation of inflanatory cells, particularly 420
neutrophils. Neutrophil chemotaxis will lead to tieéease of neutrophil elastas&21
enzymes (e.g., cathepsin G), which may exert fodbstructive effects on airwa3?2
tissues, leading to worsening and progressioneotlitease (Borson, 1991). 423
Therefore, reducing NEP activity either by cigaretinoking (Dusser et al., 1983}
hypoxia (Carpenter and Stenmark, 2001) or respirgiathogens like 425
parainfluenza virus type 1, rat corona-virus, angdplasma pulmonis (Borsor2é
al., 1989; Jacoby et al., 1988), will be a 427
clear explanation for their associated inflammatmagcades. Considering multqde
activities of NEP in regulating local inflammatamguropeptides withialveolar 429
microenvironment and nearby vascular cells (Wicilgt2011), it may exhibit a430
good target for counteracting the airway inflammiaticoagulopathy and 431
pulmonary fibrosis associated with COVID-19 infecti 432
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Referring to the studies searching for agentsriaat up-regulate NEP gene 433
expression; enhancing its activity and promotisgition (Borson, 1991), a 434
variety of selective enhancers are pre-clinicalyeloped involving drugs 435
(glucocorticoids) (Borson and Gruenert, 1991), hmmes (androgens (Yao et ad36
2008) and estrogen (Xiao et al., 2009)) or natpradlucts (apigenin, luteolin, ang7
curcumin, epigallocatechin and resveratrol) (Ayamd Melzig, 2008; Chang et38
al., 2015; El-Sayed and Bayan, 2015). 439
Along with this line, Rolipram, an investigative BB, has also been examined40
since the increase in intracellular cCAMP levelselate directly with enhanced 441
NEP activity, which in turn may prolong and potefgithe cAMP-mediated shd#2
term anti-inflammatory mechanism (Ayoub and MelZ@08; Graf et al., 1995)443
This outcome implies that another selective PDEiumilast, could exert 444
efficient anti-inflammatory effect via elevating b level as well as NEP 445
activity. Accordingly, we predict that roflumilastay be one of the most usefuli46

drugs that is expected to play a great role irtittigdCOVID-19. However, until 447

this moment, no study has indicated the potentiadldmental pathways 448
contributing to relying roflumilast on NEP activity 449
5. Roflumilast overview 450

Roflumilast is recorded to be a highly selectivegecting inhibitor of PDE4 451
isoenzyme, to which its use will be surely accong@mvith an increase in the 452

level of intracellular cAMP (Rabe, 2011). 453
5.1 Phosphodiesterase enzymes (PDES) 454

Phosphodiesterase enzymes (PDES) are a large amilgréf enzymes that 455
catalyze the hydrolysis of second messengers sicAMP and cyclic guanosidé6
mono-phosphate (cGMP) into their inactivar®nophosphate; thus regulating4s7
their intracellular level as well as the amplitwaded duration of their signaling 458
(Hertz et al., 2009). 459
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Based on amino acid sequences, tissue distribatidrpharmacological propertes,
PDEs could be classified into 11 sub-families, ngrR®E1-PDE11. Similarly, 461
PDEs can be also grouped into three categoriesdingdo their substrate 462
specificities including, cAMP-selective hydrolagPPE4, 7 and 8), cGMP- 463
selective hydrolases (PDES5, 6, and 9) and hydrstaseboth cAMP and cGMP464

(PDEL, 2, 3, 10, and 11) (Azevedo et al., 2014). 465

Regarding PDE4, it was accounted to representrd@ominant isoenzyme 466
responsible for regulating cAMP levels in many t¢gtles within the lung 467
including airway epithelial cells, airway smooth sole cells and pulmonary 468
vascular endothelium. PDE4 was also noticed toidelwdistributed in various469
inflammatory cells, like neutrophils, T lymphocyte®sinophils, monocytes ar70

basophils (Halpin, 2008; van Schalkwyk et al., 2005 471

Notably, CAMP has a direct significant role in @ifént inflammatory pathwaysaia
inhibiting ROS generation and pro-inflammatory ¢&yte production, mainly 473
TNF-o. and IL-6 (Isoni et al., 2009; Shames et al., 200AMP could also promova
the production of anti-inflammatory mediators sashL-10 which was identifietV’5
as a “cytokine synthesis inhibitory factor”, andestas a principal regulator in #7&
JAK-STAT signaling pathway (Redford et al., 201Therefore, elevating cCAMR77
level within the pulmonary tissue, vascular andaimimatory cells can provide aA8

efficient anti-inflammatory action (Li et al., 2018 479

On the other hand, it was found that the capadiBizEs for cAMP hydrolysis ig480
greater than the maximum rate of its synthesisrdtbee, minute reduction in 481
PDEs activity can result in a high elevation in cRN&vel with significant changea

in the activity of its dependent protein kinaselfita 2008). That notice pushed83

scientists since 1970 to investigate the potetitedapeutic importance of 484
inhibiting PDE4 activity (Weiss and Hait, 1977). 485
5.2. Selective and non-selective PDE4i 486

18



Because of the involvement of cAMP signaling in plaghophysiology of many 487
inflammatory diseases, it has been proved thaétsng PDE4 will resemble an 488

effective therapeutic strategy for different inflanatory conditions, such as chr4gc

obstructive pulmonary disease (COPD), asthma, atbgimatitis (AD), 490
inflammatory bowel diseases (IBD), rheumatic atih(iRA), lupus and 491
neuroinflammation (Li et al., 2018). 492

Early, non-selective PDE inhibitors were discovereduding theophylline and 493
doxofylline, but, because of their associated Siicgnit adverse effects, their usé94

had been limited. 495

Given that PDE4 is the only cellular pathway avagaor cCAMP degradation 496
(Fertig, Bracy A., 2018), therapeutic studies hlawen directed to develop the agyst
selective PDE4 inhibitors, among which, apremiéasl roflumilast are currently98

available (Boswell-Smith et al., 2006; Kumar ef 2013). 499
6. Phar macother apeutic effects of roflumilast 500

Since 2011, roflumilast has been approved by FDameanti-inflammatory drug01
specifically designed for many respiratory disosdmainly COPD and asthma.5Bg

time, roflumilast has been reported to exert d#fgipharmacological activities,503

Figure2and Table1 (Li et al., 2018). 504
6.1 Roflumilast and lung inflammation 505
Clinical trials have shown that that oral admiratn of roflumilast could 506

suppress airway inflammation and improve lung fiomcof COPD patients. In 507
addition, it is documented to be effective in radgahe frequency of disease 508
exacerbations when given as add-on to inhaled glgérapatients with moderaté@y
severe COPD (Shen et al., 2018). As regards asthpsttents, roflumilast coul810
also significantly increase the Forced expiratarumne in 1 s (FEY) and 511

improved airway inflammation (Bateman et al., 2006) 512
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The anti-inflammatory mechanisms of roflumilast ¢&ncontributed to its PDE#13
inhibiting activity, leading to an increase in cAMBncentration and signaling 514
within the epithelial airway and inflammatory cellhe action which in turn wilb15
enable roflumilast to suppress the expression@imftammatory cytokines suchil6
as IL-6 and TNFx (Feng et al., 2017). Moreover, another study gh@tte smolsad7
induced pulmonary inflammation in guinea pigs shdwet roflumilast could 518
effectively reduce the numbers of neutrophils, liogytes and eosinophils in 519

bronchoalveolar lavage fluid (Fitzgerald et al.0&pD 520

For COPD patients, roflumilast was representecéntex significant role in 521
reducing eosinophil cell counts within their brorattbiopsy samples and sputlEn2
(Rabe et al., 2018), in addition to its direct s@sging effect on neutrophils 523
function and their ROS production. As a resultleiating cCAMP level, 524
roflumilast could inhibit neutrophil chemotaxis adégranulation. cAMP could 525
directly activate protein of Epacl, which in tuiwuéd suppress neutrophil 526
migration as well as oxidative burst. Furtherma®MP could also activate 527
protein kinase A (PKA) in neutrophils, leading tdecline in their phagocytic 528

activity (Dunne et al., 2019) 529

Some in vivo and in vitro studies revealed thaluroflast can potently reduce tha0
endothelial permeability and suppress the leuke@rdothelial cell interaction$31
through altering the expression of adhesion moéscahd attenuating the up- 532
regulation of polymorphonuclear leukocytes (PMNu)face CD11b, that may b&3
stimulated either by fMLP or platelet-activatingtiar (PAF). That action could534
inhibit neutrophil adhesion to endothelial cellauid et al., 2007). Additionally535
results from in vitro studies of human neutropeh®wed that roflumilast could536
prevent the release of neutrophil elastase, matetalloproteinase and 537

myeloperoxidase, inhibiting neutrophil functioniiés et al., 2005) 538
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A synergistic effect of roflumilast with other aiimiflammatory agents such as 539
corticosteroids or long-actirg2-agonists have been demonstrated 540
(Kawamatawong, 2017). It was concluded that roflastiN-oxide (RNO), the 541
active metabolite of roflumilast, could enhancedhé-inflammatory effect of 542
dexamethasone in airway smooth muscle cells io (Ratel et al., 2017). At th&43
same time, roflumilast was reported to reversectiticosteroid-associated 544
insensitivity towards neutrophils in COPD patiefitlara et al., 2015b). As weli45
other study revealed the great value of roflumilasestoring the glucocorticoic46
sensitivity in glucocorticoid-resistant patientsaiigh blocking the downregulatidi
of glucocorticoid receptor (GB alpha, which was known to be responsible f&48

glucocorticoid resistance (Reddy et al., 2020). 549
6.2 Roflumilast and hypercoagulable states 550

Neutrophils and platelets have been identifiedrasial factors for thrombus 551
initiation and progression. Both animal models hathan diseases increased 852
evidence that neutrophils extracellular traps (NEJ¥ssess a significant role irbf3e
pathogenesis of thrombosis. NETs were detected telbased from the activateih
neutrophils in a process called NETosis, whichlmamediated by recruitment 855
both platelets and PMNL into the endothelial wahen, NETs could stimulate 556
platelet adhesion, activation and aggregation suthsequent activation of 557
coagulation cascades to trigger thrombosis (Fuchk,&010; Kimball et al., 558

2016). 559

Accordingly, inhibiting the prothrombotic functiaf neutrophils and interferin60
with NETs formation by roflumilast, could reducesttisk of thrombosis in COPIB1
as well as in other inflammatory diseases. Mored®®&O (an active metabolite562
roflumilast) was recorded to affect NETs via inliitg Src family kinases 563

phosphoinositide 3-kinase (SFK—PI3K) pathway in FMNM addition, RNO cowid4
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block the key biochemical mechanisms regulating Pplhtelet adhesiofTotani 565

et al., 2016). 566

6.3 Roflumilast and inflammatory sepsis 567
Janus kinase (JAK)/Signal transducer and activafttianscription-3 (STAT-3) 568
constitute a key cellular signal transduction patfor mediating the expressiéa9
of many inflammatory cytokines produced during $&fSai et al., 2015). This 570
pathway resembles a positive feed-back signalX¥acerbating the inflammatory71
response, resulting in uncontrolled systemic inftaation (Chang et al., 2019).572
Moreover, during sepsis, there is also an inflanmnainduced activation of 573
coagulation as a result of the concomitant impaitnoé endothelial function, 574
anticoagulant and fibrinolytic systems, indicatthgt systemic inflammation wii75
be the main pathological reaction of sepsis andrth@r cause for associated 576
multiple organ failure (Schouten et al., 2008). rEfiere, reducing inflammation577

could be the key for treating sepsis. 578

Regarding the role of roflumilast in suppressing thRNA expression of 579
JAK/STAT-3 signaling pathway with subsequent intidsi of inflammatory 580
cytokine release (e.g. IL-6 and TNiFin the lung tissue of septic mice model 581

(Chang et al., 2019), there is a proof of its pttditherapeutic benefits in septi682

organ dysfunction through the above-referred aritzinmatory and anti- 583
thrombotic activities (Hattori et al., 2017). 584
6.4. Roflumilast and lung fibrosis 585

Because of the potential effect of anti-inflammugtveatment to mitigate airwap86
fibrotic remodeling, roflumilast might play antisfiotic role due to its well-knovas7

anti-inflammatory action (Hatzelmann et al., 2010). 588

Roflumilast was found to have the ability to preivire progressive airway 589

fibrosis, as a result of antagonizing fibroblaghty, which could be mediated $§0
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TGF{1, an essential regulator of immune responsescktatfibrosis (Togo et 881
2009). Anti-fibrotic profile of roflumilast couldéalso explained by its ability 1692
reduce the expression of upregulated NADPH oxida@¢OX4) (Milara et al., 593
2015c), which was indicated to be critical for pammary fibrotic remodeling 594

(Amara et al., 2010). 595

Within this regard, roflumilast could also normalimost of increased metabolig96
changes like alterations in oxidative equilibriungreased collagen, and protep7
synthesis, resulting in decline in the fibrotic scdSimultaneously, reduced lungp8
tissue pH has been proposed as a risk factor gy fibrosis development, whick99
was also reported to be corrected by roflumilagi@omycin model of pulmonasgg0

fibrosis (Milara et al., 2015a). 601

7. Adver se effects and safety of roflumilast 602

Roflumilast can be safely administered as it isagstociated with the parlous 603
induction of adverse effects involving seizures aadliac arrhythmias; in 604
addition, its elimination is not significantly afesl by several drug classes or es@h

by food and tobacco smoking (Gupta and O’Mahon®820 606

However, results from clinical trials demonstratieatthe anti-inflammatory dos®7
of roflumilast in human was reported to be assediatith a set of minor side 608
effects such as nausea, vomiting, diarrhea, wéogstand headache (Baye, 20409.
These effects appeared to be dose-dependent aséetr which in turn did not610
need treatment discontinuation (van Schalkwyk e28I05) As such, the newly611
drug developing strategies are being directed pyone the therapeutic index a§12

roflumilast. 613

Great efforts have been made to limit the gastesiintal adverse reactions andbtiagt
provide a better benefit (Li et al., 2018). Thus, ifnproving patient tolerability, 65

study in the allergen-challenged Brown Norway rhés been performedto 616
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evaluate the efficacy of inhaled roflumilast givather intratracheally or by nas4l7
inhalation. As concluded, the inhaled form showewaerful effect on improvirgd 8
the lung function (Chapman et al., 2007), suppgrtite therapeutic importancesv$
using inhaled PDE4i against inflammatory lung déssa which may be then mép®
efficacious with fewer adverse effects than itd fimams, however it is still undes21

clinical trial (Rhee and Kim, 2020). 622

8. Roflumilast in aging, diabetic, and cardiovascular comor bidities 623

During physiological aging process, a low-gradeoolo systemic inflammations24
called inflammaging, develops and impairs the nesahce of immunological 625
homeostasis, in which there are high levels of &tiee protein (CRP), 626
proinflammatory cytokines as IL-6, in addition ta level ofanti-inflammatory 627
cytokines as IL-10 (Franceschi et al., 2018). PBEZymes play a major role 628
against inflammaging by increasing cAMP which imtatimulates AMP-activat$
protein kinase (AMPK), exerting an anti-inflammateffect. Since PDE4 enzy63®
activity in elderly individuals is greater compangih the activity in younger 631
subjects, using roflumilast can experience a radtimore increase in CAMP e
and as a consequence, potentiate its anti-inflaomnactionin old age people 633

(Muo et al., 2019). 634

Given the essential role of PDE4 in glucose andnietiabolism, roflumilast, 635
through PDEA4 inhibition, could prevent the disgaisigression in diabetes melb&&
(DM) type 2 patients via improving the glycemic éxd Roflumilast could 637
encourage the secretion of intestinal glucagongiqatide-1 (GLP-1), which is ®38
main incretin with effective insulinotropic acti@m pancreatic beta cell (Wout&9
et al., 2012). In addition, it was documented thdeficiency in PDE4B could 640
attenuate high-fat diet-induced adiposity and askytissue inflammation in micgt1

(Vollert et al., 2012), referring to the role ofltomilast in reducing weight and 642
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improving insulin sensitivity in adults with prethietes and/or obesity (Muo et 843
2019). 644

For cardiovascular safety, roflumilast showed adovate of major adverse 645

cardiovascular events in treated COPD patientqasipg its potential 646
cardiovascular benefits (Rogliani et al., 2016; et al., 2013). 647
9. Roflumilast and COVID-19 infection 648

The rationale for selecting PDE4i for COVID-19 niag/based on the previous649
findings demonstrating that inhibiting the activitifPDE4 will suppress a myriad0
of pro-inflammatory responses (Press and Bann®9)2Mhhibiting PDE4 will 651
specifically prevent cAMP degradation, which inrtwvill decrease airway 652
inflammation via preventing the activation and téirnent of inflammatory cell$53
specifically neutrophils as well as cytokines pratthn (Barnette, 1999). That 654
observation drives scientists to attractively tafeE4 for treating COVID-19. 655
In addition to its anti-inflammatory, anti-coagutamd anti-diabetic roles, 656
roflumilast could be used safely in a combinatiagthworticosteroids, 657
recommended to be used effectively against COVIDnidxtion, by improving 658
their compromised anti-inflammatory properties #melr resistance effect (Mileg89
et al., 2015b; Wang et al., 2016). 660
At the same time, azithromycin, a macrolide antibisuggested for COVID-19661
treatment, was documented to exhibit a lower dffifor cytochrome P-450A 662
(CYP) 3A4 CYP 3A4. Thus, azithromycin would pooiyeract with roflumilast663
because this cytochrome member resembles the nsabolic pathway for 664
roflumilast (Westphal, 2000). 665
A little while ago, roflumilast was predicted toezkanti-viral effect similar to theg6
of lopinavir/ritonavir viabinding very close to the middle pocket of SARS-C2867
3CLpro and thereby, interfering with its activityf et al., 2020). Then, 668

roflumilast can deprive the virus from hydrolyzitige polyprotein into functiona69
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proteins required for its replicatioRigure 3 (He et al., 2020). However, the 670

preventive and therapeutic effectiveness of roflastiagainst COVID-19 and it571

pharmacological mechanisms have not been yet éxéiystudied. 672
10. NEP-based strategy for treating COVID-19 by roflumilast 673
One of the proposed NEP-dependent mechanismsdokibh the airway 674

inflammation is to cleave the neutrophil-releasathepsin G, that is documentéas
to convert both angiotensinogen and angiotensitolangiotensin li(Fig. 4) 676
(Meyer-Hoffert, 2009; Pham, 2006; Wintroub et 4884). 677
In response teevere COVID-19 infection, ang Il is reported todoatinuously 678
generated to probably lead to the systemic cytogioam (Xiong et al., 2020). 679
Among the released cytokines, IL-6 will play a Vitale in the progression of 680
numerous inflammatory reactions as well as endiethgysfunction and platelet81
activation (Funakoshi et al., 1999; Y. Liu et 2020). Therefore, cleaving 682
cathepsin G by NEP with reducing associated Arigrthation may be logical 683
commentary for the suppressed IL-6 expression tigtdollowing roflumilast 684
treatment (Feng et al., 2017). 685
Postulating that IL-6 may be a key regulator of GD\L9 pathogenesis (T. Liug6
al., 2020), decreasing its level by roflumilastiwi of great importance. First, 687
roflumilast can stop IL-6-mediated intestinal, oliary, and ocular inflammatior688
and consequently, inhibit the induction of anosmdiarrhea, and conjunctivitis, 689
respectively. Secondpflumilast may suppress the endothelial activatiod 690
inflammatory thrombocytosis prompted by IL-6 rekeas 691
As a result of the endothelial dysfunction, neutitsptrafficking has also been 692
implicated in the pathogenesis of COVID-19, sirusrtactivation and 693
accumulation are reported to be associated wehédislamage, exaggerated 694
inflammation and disordered tissue repair (Tayl.e2820). As such, NEP can 695

degrade the chemoattractant fMLP, which was knawetinvolved in neutroplti96
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chemotaxis. Hence, NEP may specifically preventdoeuitment of neutrophils697
across the endothelial barrier from the blood d¢atton into the infected tissues98
(Sato et al., 2013)n particular, the potential role of roflumilastimmhibiting the 699
adhesion and transmigration of neutrophils and thésequent inflammatory 700
sepsis may be attributable to increased NEP actiMitii Li et al., 2020; Sanz e701
al., 2007). 702
Additionally, NEP was reported to effectively brdakvn the endothelium-deriveas
ET-1; preventing the activation and aggregatioplafelets as a result of 704
prohibiting the synthesis of PAF (Mustafa et a898; Rao and White, 1982), 705
which was previously demonstrated to be also sggpreby the action of PDEZ06
(Tenor et al., 1996). Accordingly, this observatioay reflect the potential NER:07
dependent anti-coagulant role of roflumilast agatine thromboembolic eventsia8
COVID-19; empowering it to restrain the developmeiPIC which is the initial709
step for evolving stroke in COVID-19 patients (Aaugt al., 2020). 710
In line, it was also shown that COVID-19 patientsynshow pulmonary fibrosis711
from which NEP may protect lungs by stopping thel=ihduced TGH31, 712
ensuring the concept that roflumilast may haveptbtential to attenuate the 713
fibroblast activities and thereby, the ability tmttion as anti-fibrotic agent via714
blocking the fibrosis driven by TGEt (Dunkern et al., 2007; Togo et al., 2009L5
Additionally, breaking ET-1 by NEP will prolong tlaati-inflammatory effect of716
roflumilast via maintaining the high cAMP level whiis underscored to play ar7
important role in improving the immune system aftiy risk COVID-19 groups718
(Graf et al., 1995; Raker et al., 2016). 719
Furthermore, enhancing NEP activity may explaingbgential cardiovascular 720
benefits ofroflumilast. During the airway inflammation, NERetf may act 721
indirectly to decrease the blood pressure via diiggecathepsin G, that 722

consequently inhibits the formation of angiotersibecreasing angiotensin 11723
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level will direct the pulmonary renin angiotensirogsystem (RAS) for generatiag

more angiotensin (I7) which, via Mas receptor, can induce natriuresisésis 725

(Shah et al., 2010) and trigger the endotheliaimnitxide synthase (eNOS) to 726
stimulate nitric oxide (NO) release, promoting lWo@ssel relaxation (Fraga-Sil2a
et al., 2008; Patel and Schultz, 2013). 728
Accordingly, we recommend that future clinical etfoshould be driven towardz29
ensuring the NEP-mediated pharmacotherapeutic mextha of roflumilast 730
proposed for counteracting COVID-19 infection. 731
11. Conclusion 732
Reducing the patient’s risk of COVID-19 progress®massumed to be biologicalig
linked with suppression of the neutrophilic computrthat predisposes to 734
increased systemic inflammation and coagulopathgaated with COVID-19 735
infection. Therefore, management of COVID-19 shdaklis on modulating 736
neutrophil function and their response. Accordim¢hie underlying guidelines, 737
recommended anti-inflammatory therapies for COVHEDdb not provide treatmzag
satisfaction and effectiveness until now. 739
As the search continues, PDE4i has been suggestéfitt an intriguing new clag®
of COVID-19 treatment, since inhibiting PDE4 is tight to exhibit effective anti41
inflammatory and anti-platelet activities. Among ttlinically used PDEA4i, 742
roflumilast has been reported to be the most seteand effective drug submittets
for treating many neutrophils-mediated airway inftaatory disorders. 744
Furthermore, roflumilast has been recently repaiddoehave as a potential 745
inhibitor of 3CLpro, which is a proteolytic enzymeqguired for viral replication 746
within the host cells. 747
Considering COVID-19 treatment, roflumilast mayoatave additive advantage48
to the concurrent protocol, since it had been tteplaio be used safely in 749

combination with either corticosteroids, azithrommyand recommended vitamiASo
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(C, E and Zinc) without showing any dangerous astvefffects up till now. As 751
well, via attenuating the airway neutrophilic imflenation, roflumilast can enhargz
the compromised anti-inflammatory properties oticosteroids and improve t#B
resistance effect. 754
Additionally, because of increasing cAMP level, suppose that roflumilast canss
prolong its anti-inflammatory effect and displayet therapeutic properties viaz56
enhancing NEP activity, which is proposed to béngportant target for managing7
COVID-19. 758
Therefore, taken into our consideration that thigaw is the first one to discus359
the NEP-mediated therapeutic properties of roflastibnd its role in facing the760
inflammatory, coagulopathy and fibrotic cascadégetrby COVID-19, we hop@b61l
that our hypothesis will serve as a stimulus fothfer confirmation about the 762
therapeutic impact of roflumilast in COVID-19 maeagent and consequently,763

may provide physicians with a novel repurposeditneat option against COVIDe4

19. 765
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Table 1: Multiple pharmacological propertiesof roflumilast

M odel
phar macological Main molecular
(invitro/ in
effect of Dose mechanisms of References
vivo/clinical
roflumilast action
trial)
10°- 10°M Neutrophil Suppressed the  (Jones et al.,
adhesionto  release of MPO, NE  2005)
HUVECs and MMP-9
Inhibition of
neutrophil 1-1000 nM 11 Human PLTs Inhibited the release (Totani et
function and PMNs of NETs and al., 2016)

suppressed tissue
factor expression in

MNs




500 ug/d

Anti-
inflammatory

effect

COPD patients Inhibited (Martinez et
phosphodiesterase-4 al., 2015)
enzyme that targets
the systemic
inflammation
associated with
COPD and
decreased

inflammatory

mediators

500ug/d Allergic Inhibited allergen-  (Bateman
asthmatic induced et al., 2016;
patients sputum eosinophils, Gauvreau et
neutrophils and ECP al., 2011)
0.3—-1.0 mg/kg Mice with cecal Reduced (Feng et al.,
body ligation and bacterial load, 2017)
puncture- inhibited expression

Prevention of
polymicrobial

sepsis

induced sepsis of pro-inflammatory
cytokines mainly

IL-6 and TNF-alpha
and suppressed

NF-xB, p38 MAPK

and STAT3




1,10,and 100 n Human ASM Inhibited ECM (Burgess et
mol/Land 1 p cells protein deposition  al., 2006)
mol/L dissolved and thereby, airway
in DMSO remodeling
Inhibition of
5 mg/kg/d,
airway
suspended in  BALB/c mice Reduced the (Kumar et
remodeling
2.5% model of chronic  accumulation of al., 2003)
polyethylene asthma chronic
glycol 4% inflammatory cells,
methylcellulose and thickening of
solution airway epithelium
10°- 10° M Distal human Attenuated cell  (Growcott
PASMCs proliferation and et al., 2006)

Anti-proliferative

effect

production of
(MMP-2 and

MMP-9)




5 mg/kg/day Bleomycin- Antagonized (Milara et
Induced Fibrosis metabolic al., 2015a)

in mice effects related to

pulmonary fibrosis

(like alterations in

the oxidative
equilibrium, a strong
Anti- fibrotic inflammatory
effect response and
collagen synthesis
activation)
10°- 10" M Adult human Antagonized the  (Togo et al.,
lung fibroblast  profibrotic activity 2009)
cell lines of fibroblasts
stimulated by
TGF$1
500pg/d 35-70years  Enhanced secretion (\Wouters et
Anti- patients with  of intestinal GLP-1, al., 2012)
hyperglycemic newly diagnosed a main incretin with
effect DM type Il potent insulinotropic

effect

HUVECs: Human umbilical vein endothelial cells; MP®lyeloperoxidase; NE:

Neutrophil elastase; MMP-9: Matrix metalloproteiegs PLTs: Platelets; PMNs:



Polymorphonuclear leukocytes; NETs: Neutrophil acétlular traps; MN:
Monocytes; COPD: Chronic obstructive pulmonary dsse ECP: Eosinophil cationic
protein; NF«B: Nuclear factor-kappa B; MAPK: Mitogen-activatpwbtein kinase;
STATS3: Signal transducer and activator of trangmip 3; ASM: Airway smooth
muscle; DMSO: Dimethyl sulfoxide; ECM: Extracelwnl matrix; PASMCs:
Pulmonary artery smooth muscle cells; TEE-Tissue growth factor-beta 1; DM:

Diabetes mellitus; GLP-1: glucagon like peptide-1.
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Figure 1: A schematic diagram of COVID-19 pathophysiology

Binding of Severe acute respiratory syndrome corions-2 (SARS-CoV-2) with angiotensin
converting enzyme-2 (ACE-2) may downregulate ityiloiting the ACE-2 / angiotensin
(1-7) / Mas receptor axis and subsequently, aatigathe ACE / angiotensin (Ang) Il /
angiotensin Il type 1 (AT1) receptor axis on thieeptside, that may lead to an increase in the
level of angiotensin Il. Angiotensin Il could protecthe release of multiple inflammatory
cytokines particularly, interleukin-6 (IL-6), whichbould play a crucial role in inducing
intestinal, olfactory and ocular inflammation, imldition to disrupting the function of
endothelial cells. SARS-CoV-2 itself can also ineluendothelial dysfunction; resulting in
platelet activation and aggregation. Moreover, émel@l dysfunction may trigger more
inflammation through trafficking more neutrophilsithv subsequent inflammatory sepsis.
Simultaneously, secreting endothelin-1 (ET-1) a®sult of endothelial dysfunction could
stimulate the fibrotic consequences via persuattiegelease of transforming growth factor-
B1 (TGF$1), developing pulmonary fibrosis. In addition, ETeould also exaggerate the
inflammation via decreasing the level of cyclic adsine monophosphate (CAMP).



Figure 2: General outline of roflumilast pharmacological ant



Figure 3: Suggested anti-SARS-CoV-2 effect of roflumilast

For SARS-CoV-2 to be replicated inside the cytopi@asmembranes, its viral polyprotein
chains should be firstly hydrolyzed into functiomabteins either by papain like protease,
3C-like protease (3CLpro), RNA-dependent RNA polyase (RdRp), helicase, or
endoribonuclease. Roflumilast is predicted to dm=dly bind very close to the middle
pocket of SARS-CoV-2 3CLprotease and thereby, megrfiere with its proteolytic activity;
preventing viral replication.



Figure 4: ProposedNEP-based therapeutic mechanisms of roflumilastréating
COVID-19

Being a highly selective phosphodiesterase-4 intilfPDEA4i), roflumilast acts by enhancing
cyclic adenosine monophosphate (CAMP) level, wihcturn will increase neprilysin (NEP)
activity. Once NEP is activated, it can cleave tieutrophil-released cathepsin G and
consequently, prevent angiotensin Il formation.tMa#l be accompanied by a decrease in the
level of released interleukin-6 (IL-6) and its agated olfactory, intestinal and ocular
inflammatory reactions as well as IL-6 -mediateddaghelial dysfunction and platelet
activation. Moreover, NEP can degrade the chenam#int N-formyl-L-methionyl-L-leucyl-
L-phenylalanine (fMLP), prohibiting neutrophil reitment and chemotaxis and hence, their
subsequent inflammatory sepsis. Therefore, NEPpaaticipate in reducing the induction of
endothelial dysfunction and platelet activation. déiwdnally, NEP can breakdown
endothelin-1 (ET-1); preventing the synthesis oatglet activating factor (PAF) and
accordingly, the activation and aggregation of gt as well as pulmonary intravascular
coagulopathy (PIC) development. Degrading ET-1 akso inhibit pulmonary fibrosis via
blocking the ET-1-induced transforming growth faetpl (TGFf$1), and at the same time,
maintain the high level of cAMP which may contriedior long-term anti-inflammatory effect
of roflumilast.



Highlights

¢ Roflumilast as anovel option for COVID-19 therapy is addressed in thisreview

* NEP-mediated therapeutic properties of roflumilast against COVID-19-associated
inflammatory, coagulopathy and fibrotic cascades

* Roflumilast may inhibit COVID-19-induced endothelial dysfunction and
coagul opathy

* Roflumilast may counteract neutrophil-mediated inflammation and subsequent sepsis
in COVID-19

¢ Roflumilast may prevent COVID-19 prompted pulmonary fibrosis



